Research People Publications Labs Tools
 
 
Selected
2023
2022
2021
Before 2021
Patent (专利)
 
Selected
 
[13]. Large second-order susceptibility from a quantized ITO monolayer. Nature Nanotechnology 2024. https://www.nature.com/articles/s41565-023-01574-1
 
[12]. Experimental observation of Berry phases in optical Möbius-strip microcavities, Nature Photonics 2023. https://www.nature.com/articles/s41566-022-01107-7
 
[11]. Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging, Nature Communications 2022. https://www.nature.com/articles/s41467-022-34553-6
 
[10]. Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling. Nature Communications 2021. https://www.nature.com/articles/s41467-021-23512-2
 
[9]. Two-dimensional optical spatial differentiation and high-contrast imaging. National Science Review 2020. https://doi.org/10.1093/nsr/nwaa176
 
[8]. Nanoscale optical pulse limiter enabled by refractory metallic quantum wells. Science Advances 2020. https://advances.sciencemag.org/content/6/20/eaay3456.full
 
[7]. Large optical nonlinearity enabled by coupled metallic quantum wells. Light: Science & Applications 2019. https://www.nature.com/articles/s41377-019-0123-4
 
[6]. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences 2019. https://www.pnas.org/content/116/23/11137 (Highly Cited Paper)
 
[5]. Efficient light generation from enhanced inelastic electron tunneling. Nature Photonics 2018. https://www.nature.com/articles/s41566-018-0216-2
 
[4]. Giant Kerr response of ultrathin gold films from quantum size effect. Nature Communications 2016. https://www.nature.com/articles/ncomms13153
 
[3]. Spin-orbit coupling of light in asymmetric microcavities, Nature Communications 2016. https://www.nature.com/articles/ncomms10983
 
[2]. Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors, Science Advances 2016. https://www.science.org/doi/10.1126/sciadv.1600027
 
[1]. Localized surface plasmons selectively coupled to resonant light in tubular microcavities, Physical Review Letters 2016. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.253904
 

2023
 
[38]. Y. Zhang#, B. Gao#, D. Lepage, Y. Tong, P. Wang, W. Xia, J. Niu, Y. Feng, H. Chen*, H. Qian*, Large second-order susceptibility from a quantized ITO monolayer. Nature Nanotechnology (2023). https://www.nature.com/articles/s41565-023-01574-1
 
[37]. C. Chen#, H. Qian#, and Zhaowei Liu*, Electrically Tunable Strong Optical Nonlinearity in Near-Infrared by Coupled Metallic Quantum Wells. Advanced Optical Materials https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.202302176 (2023).
 
[36]. Y. Zhang, D. Lepage, Y. Feng, S. Zhao, H. Chen* and H. Qian*. Resonant Inelastic Tunneling using Multiple Metallic Quantum Wells. Nanophotonics 12,16 https://www.degruyter.com/document/doi/10.1515/nanoph-2023-0231/html (2023).
 
[35]. C. Pan, Y. Tong, H. Qian, A. Krasavin, J. Li, J. Zhu, Y. Zhang, B. Cui, Z. Li, C. Wu, L. Liu, L. Li, X. Guo, A. Zayats*, L. Tong* and P. Wang*, Large-area, freestanding single-crystal gold of single-nanometer thickness. Nature Communications 15(1) https://www.nature.com/articles/s41467-024-47133-7 (2023).
 
[34]. Y. Zhang, D. Lepage, B. Gao, P. Wang, C. Pan, J. Niu, H. Chen*, and H. Qian*. Efficient and unidirectional launching of surface plasmons from a hyperbolic meta-antenna. Laser & Photonics Reviews 17, 9, 2300129 https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.202300129 (2023).
 
[33]. J. Niu, H. Shao, Y. Feng, B. Gao, Y. Zhang, Y. Li, H. Chen* and H. Qian*. All-optical nonlinear neuron based on metallic quantum wells. Advanced Optical Materials 11, 14, 2300223 https://onlinelibrary.wiley.com/doi/10.1002/adom.202300223 (2023).
 

2022
 
[32]. H. Ma, J. Niu, B. Gao, Y. Zhang, Y. Feng, F. Gao, H. Chen* and H. Qian*. Tunable Metasurface based on Plasmonic Quasi Bound State in the Continuum Driven by Metallic Quantum Wells. Advanced Optical Materials 11, 2202584 https://doi.org/10.1002/adom.202202584 (2022).
 
[31]. Y. Feng, J. Niu, Y. Zhang, Y. Li, H. Chen*, H. Qian*. Optical Neural Networks for Holographic Image Recognition (Invited Paper). Progress In Electromagnetics Research 176, 25-33, https://www.jpier.org/PIER/pier.php?paper=22092907 (2022).
 
[30]. Y. Shou, Y. Feng, Y. Zhang, H. Chen*, and H. Qian*. Deep Learning Approach Based Optical Edge Detection Using ENZ Layers. Progress In Electromagnetics Research 175, 81-89, https://www.jpier.org/issues/volume.html?paper=22061403 (2022).
 
[29]. D. Li, B. Gao, H. Ma, W. Yin*, H. Chen*, H. Qian*. Ultrafast Tunable Scattering of Optical Antenna driven by Metallic Quantum Wells. ACS Photonics 9, 7, 2346–2353, https://pubs.acs.org/doi/10.1021/acsphotonics.2c00359 (2022).
 
[28]. C. Qian*, Z. Wang, H. Qian, T. Cai, B. Zheng, X. Lin, Y. Shen, I. Kaminer, E. Li, and H. Chen*. Dynamic recognition and mirage using neuro-metamaterials. Nature Communications 13, 2694 https://www.nature.com/articles/s41467-022-30377-6 (2022).
 
[27]. H. Ma, D. Li, N. Wu, Y. Zhang, H.Chen,* and H. Qian*. Nonlinear all-optical modulator based on non-Hermitian PT symmetry. Photonics Research 10, 980-988 https://opg.optica.org/prj/fulltext.cfm?uri=prj-10-4-980&id=470772 (2022).
 

2021
 
[26]. N. Wu, Y. Zhang, H. Ma, H. Chen*, H. Qian*. Tunable high-Q plasmonic metasurface with multiple surface lattice resonances (invited). Progress In Electromagnetics Research 172, 23-32 https://www.jpier.org/PIER/pier.php?paper=21112006 (2021).
 
[25]. D. Li, H. Ma, Q. Zhan, J. Liao, W. Yin*, H. Chen*, H. Qian*. High-speed efficient on-chip electro-optic modulator based on midinfrared hyperbolic metamaterials. Physical Review Applied 16, 034002 https://doi.org/10.1103/PhysRevApplied.16.034002 (2021).
 
[24]. S. Bopp, H. Qian, Z. Liu*. Influence of Hafnium Defects on the Optical and Structural Properties of Zirconium Nitride. Physica Status Solidi 15, 2100372 https://doi.org/10.1002/pssr.202100372 (2021).
 
[23]. Y. Zhang, Y. Liao, Y. Shou, N. Wu, H. Chen* and H. Qian*. Broadband Transparent Electrode in Visible/Near-Infrared Regions. ACS Photonics 8, 2203 https://doi.org/10.1021/acsphotonics.1c00515 (2021).
 
[22]. H. Qian#, S. Li#, S. Hsu#, C. Chen, F. Tian, A. Tao and Z. Liu*. Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling. Nature Communications, 12, 3111 https://www.nature.com/articles/s41467-021-23512-2 (2021).
 

Before 2021
 
[21]. J. Zhou#, H. Qian#, C. Chen, L. Chen, Z. Liu*. Kerr metasurface enabled by metallic quantum wells. Nano Letter, 21(1), 330–336 (2020).
 
[20]. J. Zhou#, S. Liu#, H. Qian, Y. Li, H. Luo*, S. Wen, Z. Zhou*, G. Guo, B. Shi and Z. Liu*. Metasurface enabled quantum edge detection. Science Advances 6, eabc4385 (2020). (Featured by Phys.org https://phys.org/news/2020-12-metasurface-enabled-quantum-edge.html)
 
[19]. K. Wang, H. Qian*, Z. Liu, and P. K. L. Yu*. Second-order Nonlinear Susceptibility Enhancement in Gallium Nitride Nanowires. Progress In Electromagnetics Research, 168, 25-30 (2020).
 
[18]. J. Zhou#, H. Qian#, J. Zhao, M. Tang, Q. Wu, M. Lei, H. Luo*, S. Wen, S. Chen and Z. Liu*. Two-dimensional optical spatial differentiation and high-contrast imaging. National Science Review, nwaa176 (2020).
 
[17]. S. Bopp, H. Qian, S. Li and Z. Liu*. Large second-order nonlinearity in asymmetric metallic quantum wells. Appl. Phys. Lett. 116, 241105 (2020).
 
[16]. H. Qian#, S. Li#, Y. Li, C.-F. Chen, W. Chen, S. Bopp, Y. Lee, W. X and Z. Liu*. Nanoscale optical pulse limiter enabled by refractory metallic quantum wells. Science Advances 6, eaay3456 (2020).
 
[15]. S. Li#, H. Qian#, and Z. Liu*, Anomalous nonlinear optical selection rules in metallic quantum wells. Advanced Functional Materials, 30(21), 2000829 (2020).
 
[14]. H. Qian, S. Li, C.-F. Chen, S.-W. Hsu, S. E. Bopp, Q. Ma, A. R. Tao, and Z. Liu*, Large optical nonlinearity enabled by coupled metallic quantum wells. Light: Science & Applications 8, 13 (2019).
 
[13]. J. Zhou#, H. Qian#, C.-F. Chen, J. Zhao, G. Li, Q. Wu, H. Luo*, S. Wen, and Z. Liu*, Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences 116, 11137 (2019).
 
[12]. J. Zhou#, H. Qian#, H. Luo*, S. Wen, and Z. Liu*, A spin controlled wavefront shaping metasurface with low dispersion in visible frequencies. Nanoscale 11, 17111 (2019).
 
[11]. H. Qian#, S.-W. Hsu#, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao*, and Z. Liu*, Efficient light generation from enhanced inelastic electron tunneling. Nature Photonics 12, 485 (2018).
 
[10]. Y. Zeng#, H. Qian#, M. J. Rozin#, Z. Liu, and A. R. Tao*, Enhanced Second Harmonic Generation in Double-Resonance Colloidal Metasurfaces. Advanced Functional Materials 28, 1803019 (2018).
 
[9]. J. Zhou#, H. Qian#, G. Hu, H. Luo*, S. Wen, and Z. Liu*, Broadband Photonic Spin Hall Meta-Lens. ACS Nano 12, 82 (2018).
 
[8]. Q. Ma, H. Qian, S. Montoya, W. Bao, L. Ferrari, H. Hu, E. Khan, Y. Wang, E. E. Fullerton, E. E. Narimanov, X. Zhang, and Z. Liu*, Experimental Demonstration of Hyperbolic Metamaterial Assisted Illumination Nanoscopy. ACS Nano 12, 11316 (2018).
 
[7]. D. Lu, H. Qian, K. Wang, H. Shen, F. Wei, Y. Jiang, E. E. Fullerton, P. K. L. Yu, and Z. Liu*, Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells. Advanced Materials 30, 1706411 (2018).
 
[6]. Y. Lei#, Y. Chen#, Y. Gu, C. Wang, Z. Huang, H. Qian, J. Nie, G. Hollett, W. Choi, Y. Yu, N. Kim, C. Wang, T. Zhang, H. Hu, Y. Zhang, X. Li, Y. Li, W. Shi, Z. Liu, M. J. Sailor, L. Dong, Y.-H. Lo, J. Luo, and S. Xu*, Controlled Homoepitaxial Growth of Hybrid Perovskites. Advanced Materials 30, 1705992 (2018).
 
[5]. Y. Xiao, H. Qian, and Z. Liu*, Nonlinear Metasurface Based on Giant Optical Kerr Response of Gold Quantum Wells. ACS Photonics 5, 1654 (2018).
 
[4]. L. Ferrari, J. S. T. Smalley, H. Qian, A. Tanaka, D. Lu, S. Dayeh, Y. Fainman, and Z. Liu*, Design and Analysis of Blue InGaN/GaN Plasmonic LED for High-Speed, High-Efficiency Optical Communications. ACS Photonics 5, 3557 (2018).
 
[3]. H. Qian#, Y. Xiao#, and Z. Liu*, Giant Kerr response of ultrathin gold films from quantum size effect. Nature Communications 7, 13153 (2016).
 
[2]. H. Qian#, Y. Xiao#, D. Lepage#, L. Chen, and Z. Liu*, Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films. Nanophotonics 4, 413 (2015).
 
[1]. H. Qian#, Y. Ma#, Q. Yang#,*, B. Chen, Y. Liu, X. Guo, S. Lin, J. Ruan, X. Liu, L. Tong, and Z. L. Wang*, Electrical Tuning of Surface Plasmon Polariton Propagation in Graphene–Nanowire Hybrid Structure. ACS Nano 8, 2584 (2014).
 

Patent (专利)
 
1. 基于石墨烯二维材料的金属纳米线表面等离子体调制器,2013年。
 
2. 一种柔性透明电极,2022年。
 
3. 一种基于准连续域束缚态的金属量子阱光开关及其制备方法,2022年。
 
4. 一种基于金属量子阱的类神经元光学开关,2023年。
 
5. 一种基于双曲纳米天线的非弹性隧穿片上光源,2023年。
 
6. 一种辐射制冷柔性薄膜及其制备方法与应用, 2023年。
 
7. 一种等离激元增强的可见近红外光电探测器,2023年。
 
8. 一种基于金属量子阱的片上光拓扑调制器,2023年。
 
 
 


College of Information Science & Electronic Engineering
Zhejiang University, Hangzhou 310027, China
© 2023, Quantum Nanophotonics Lab